page 1
page 2
page 3
page 4
page 5
page 6
page 7
page 8
page 9
page 10
page 11
page 12
page 13
page 14
page 15
page 16
page 17 page 18
page 19
page 20
page 21
page 22
page 23
page 24
page 25
page 26
page 27
page 28
page 29
page 30
page 31
page 32
page 33
page 34
page 35
page 36
page 37
page 38
page 39
page 40
page 41
page 42
page 43
page 44
page 45
page 46
page 47
page 48
page 49
page 50
page 51
page 52
page 53
page 54
page 55
page 56
page 57
page 58
page 59
page 60
page 61
page 62
page 63
page 64
page 65
page 66
page 67
page 68
page 69
page 70
page 71
page 72
page 73
page 74
page 75
page 76
page 77
page 78
page 79
page 80
page 81
page 82
page 83
page 84
page 85
page 86
page 87
page 88
page 89
page 90
page 91
page 92
page 93
page 94
page 95
page 96
page 97
page 98
page 99
page 100
page 101
page 102
page 103
page 104
page 105
page 106
page 107
page 108
page 109
page 110
page 111
page 112
page 113
page 114
page 115
page 116
page 117
page 118
page 119
page 120
page 121
page 122
page 123
page 124
page 125
page 126
page 127
page 128
page 129
page 130
page 131
page 132
page 133
page 134
< prev - next > Energy Biogas biogas plants in animal husbandry (Printable PDF)
Solid and liquid agroindustrial waste materials, from slaughterhouses for example, and wastewater
from sugar/starch processing are not gone into here, since small-scale biogas plants of simple
design would not suffice in that connection (cf. chapter 6).
Waste from animal husbandry
Most simple biogas plants are "fueled" with manure (dung and urine), because such substrates
usually ferment well and produce good biogas yields. Quantity and composition of manure are
primarily dependent on:
- the amount of fodder eaten and its digestibility; on average, 40 - 80% of the organic content
reappears as manure (cattle, for example, excrete approximately 1/3 of their fibrous
fodder),
- quality of fodder utilization and the liveweight of the animals.
It is difficult to offer approximate excrement-yield values, because they are subject to wide variation.
In the case of cattle, for example, the yield can amount to anywhere from 8 to 40 kg per head and
day, depending on the strain in question and the housing intensity. Manure yields should therefore
be either measured or calculated on a liveweight basis, since there is relatively good correlation
between the two methods.
The quantities of manure listed in table 3.2 are only then fully available, if all of the anirnals are kept
in stables all of the time and if the stables are designed for catching urine as well as dung (cf.
chapter 3.3).
Thus, the stated values will be in need of correction in most cases. If cattle are only kept in night
stables, only about 1/3 to 1/2 as much manure can be collected. For cattle stalls with litter, the total
yields will include 2 - 3 kg litter per animal and day.
Table 3.2: Standard liveweight values of animal husbandry and average manure yields (dung
and urine) as percentages of liveweight (Source: Kaltwasser 1980, Williamson and Payne
1980)
Species
Cattle
Buffalo
Pigs
Sheep/goats
Chickens
Human
Daily manure
yield as % of
liveweight
dung urine
5 4-5
5 4-5
23
3 1 - 1.5
4.5
12
Fresh-manure
solids
TS (%)
16
14
16
30
25
20
VS (%)
13
12
12
20
17
15
Liveweight
(kg)
135 - 800
340-420
30- 75
30 - 100
1.5 - 2
50- 80
17