Checked content

File:Chaotic Bunimovich stadium.png

Summary

Description
English: billiards in a Bunimovich stadium, initial deviation is an angle of one degree

Mathematica source code

In[403]:= NN[v_]:=Sqrt[v[[1]]^2+v[[2]]^2]; Ang[v0_,va_,vb_]:=(va-v0).(vb-v0)/NN[va-v0]/NN[vb-v0]; 1st trajectory p0={0,0}; q0=\[Pi]/9; In[334]:= NSolve[(p0[[1]]+t Cos[q0]-1)^2+(p0[[2]]+t Sin[q0])^2==1,t] Out[334]= {{t\[Rule]0.},{t\[Rule]1.87939}} In[335]:= t0=1.8793852415718169`; p1=p0+t0{Cos[q0],Sin[q0]}; q1=-\[Pi]+(ArcCos[p1[[1]]-1]+q0); NSolve[p1[[2]]+t Sin[q1]\[Equal]-1,t] Out[338]= {{t\[Rule]1.89693}} In[180]:= t1=1.896927737347811; p2=p1+t1{Cos[q1],Sin[q1]}; q2=2\[Pi]-q1; NSolve[p2[[2]]+t Sin[q2]\[Equal]1,t] Out[183]= {{t\[Rule]2.3094}} In[202]:= t2=2.3094010767585043; p3=p2+t2{Cos[q2],Sin[q2]}; q3=2\[Pi]-q2; NSolve[(p3[[1]]+t Cos[q3]+1)^2+(p3[]+t Sin[q3])^2==1,t] Out[205]= {{t\[Rule]0.200212},{t\[Rule]2.19472}} In[405]:= t3=2.194718395858327; p4=p3+t3{Cos[q3],Sin[q3]}; Solve[Ang[p4,p3,{-1,0}]\[Equal]Ang[p4,({Cos[t],Sin[t]}+p4),{-1,0}],t] From In[405]:= \!\(\* RowBox[{\(Power::"infy"\), \(\(:\)\(\ \)\), "\<\"Infinite expression \ \\!\\(1\\/0\\^2\\) encountered. \\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\", \ ButtonStyle->\\\"RefGuideLinkText\\\", ButtonFrame->None, \ ButtonData:>\\\"Power::infy\\\"]\\)\"\>"}]\) From In[405]:= \!\(\* RowBox[{\(Solve::"ifun"\), \(\(:\)\(\ \)\), "\<\"Inverse functions are \ being used by \\!\\(Solve\\), so some solutions may not be found; use Reduce \ for complete solution information. \ \\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\", ButtonStyle->\\\"RefGuideLinkText\ \\\", ButtonFrame->None, ButtonData:>\\\"Solve::ifun\\\"]\\)\"\>"}]\) Out[407]= {{t\[Rule]1.0472},{t\[Rule]1.19548}} In[328]:= q4=1.1954752520981573; NSolve[p4[[2]]+t Sin[q4]\[Equal]1,t] Out[329]= {{t\[Rule]2.04289}} In[440]:= t4=2.0428873267106815`; p5=p4+t4{Cos[q4],Sin[q4]}; q5=2\[Pi]-q4; 2 nd trajectory In[384]:= P0={0,0}; Q0=\[Pi]/9+\[Pi]/180; In[386]:= NSolve[(P0[[1]]+t Cos[Q0]-1)^2+(P0[[2]]+t Sin[Q0])^2==1,t] Out[386]= {{t\[Rule]0.},{t\[Rule]1.86716}} In[387]:= T0=1.8671608529944035`; P1=P0+T0{Cos[Q0],Sin[Q0]}; Q1=-\[Pi]+(ArcCos[P1[[1]]-1]+Q0); NSolve[P1[[2]]+t Sin[Q1]\[Equal]-1,t] Out[390]= {{t\[Rule]1.87331}} In[391]:= T1=1.8733090735550966`; P2=P1+T1{Cos[Q1],Sin[Q1]}; Q2=2\[Pi]-Q1; NSolve[P2[[2]]+t Sin[Q2]\[Equal]1,t] Out[394]= {{t\[Rule]2.24465}} In[395]:= T2=2.2446524752687225`; P3=P2+T2{Cos[Q2],Sin[Q2]}; Q3=2\[Pi]-Q2; NSolve[(P3[[1]]+t Cos[Q3]+1)^2+(P3[]+t Sin[Q3])^2==1,t] Out[398]= {{t\[Rule]0.341712},{t\[Rule]2.23354}} In[419]:= T3=2.233539454680641`; P4=P3+T3{Cos[Q3],Sin[Q3]}; Solve[Ang[P4,P3,{-1,0}]\[Equal]Ang[P4,({Cos[t],Sin[t]}+P4),{-1,0}],t] From In[419]:= \!\(\* RowBox[{\(Power::"infy"\), \(\(:\)\(\ \)\), "\<\"Infinite expression \ \\!\\(1\\/0\\^2\\) encountered. \\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\", \ ButtonStyle->\\\"RefGuideLinkText\\\", ButtonFrame->None, \ ButtonData:>\\\"Power::infy\\\"]\\)\"\>"}]\) From In[419]:= \!\(\* RowBox[{\(Solve::"ifun"\), \(\(:\)\(\ \)\), "\<\"Inverse functions are \ being used by \\!\\(Solve\\), so some solutions may not be found; use Reduce \ for complete solution information. \ \\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\", ButtonStyle->\\\"RefGuideLinkText\ \\\", ButtonFrame->None, ButtonData:>\\\"Solve::ifun\\\"]\\)\"\>"}]\) Out[421]= {{t\[Rule]1.09956},{t\[Rule]1.76035}} In[423]:= Q4=1.786499618850784`; NSolve[(P4[[1]]+t Cos[Q4]+1)^2+(P4[]+t Sin[Q4])^2==1,t] Out[424]= \!\({{t \[Rule] \(-2.961831812996791`*^-16\)}, {t \[Rule] 1.874216860919306`}}\) In[428]:= T4=1.874216860919306`; P5=P4+T4{Cos[Q4],Sin[Q4]}; Solve[Ang[P5,P4,{-1,0}]\[Equal]Ang[P5,({Cos[t],Sin[t]}+P5),{-1,0}],t] From In[428]:= \!\(\* RowBox[{\(Power::"infy"\), \(\(:\)\(\ \)\), "\<\"Infinite expression \ \\!\\(1\\/0\\^2\\) encountered. \\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\", \ ButtonStyle->\\\"RefGuideLinkText\\\", ButtonFrame->None, \ ButtonData:>\\\"Power::infy\\\"]\\)\"\>"}]\) From In[428]:= \!\(\* RowBox[{\(Solve::"ifun"\), \(\(:\)\(\ \)\), "\<\"Inverse functions are \ being used by \\!\\(Solve\\), so some solutions may not be found; use Reduce \ for complete solution information. \ \\!\\(\\*ButtonBox[\\\"More\[Ellipsis]\\\", ButtonStyle->\\\"RefGuideLinkText\ \\\", ButtonFrame->None, ButtonData:>\\\"Solve::ifun\\\"]\\)\"\>"}]\) Out[430]= {{t\[Rule]-1.35509},{t\[Rule]-0.642004}} In[432]:= Q5=-0.6420035368814776`; Illustration In[451]:= Show[Graphics[{ Thickness[.003], Line[{{-1,-1},{1,-1}}], Line[{{-1,1},{1,1}}], Circle[{1,0},1,{-\[Pi]/2,\[Pi]/2}], Circle[{-1,0},1,{\[Pi]/2,3\[Pi]/2}], RGBColor[254/256,194/256,0], Thickness[.0051],PointSize[.03], Line[{p0,p0+t0{Cos[q0],Sin[q0]}}], Line[{p1,p1+t1{Cos[q1],Sin[q1]}}], Line[{p2,p2+t2{Cos[q2],Sin[q2]}}], Line[{p3,p3+t3{Cos[q3],Sin[q3]}}], Line[{p4,p4+t4{Cos[q4],Sin[q4]}}], Line[{p5,p5+1.9{Cos[q5],Sin[q5]}}], Point[p5+1.9{Cos[q5],Sin[q5]}], RGBColor[188/256,30/256,71/256], Line[{P0,P0+T0{Cos[Q0],Sin[Q0]}}], Line[{P1,P1+T1{Cos[Q1],Sin[Q1]}}], Line[{P2,P2+T2{Cos[Q2],Sin[Q2]}}], Line[{P3,P3+T3{Cos[Q3],Sin[Q3]}}], Line[{P4,P4+T4{Cos[Q4],Sin[Q4]}}], Line[{P5,P5+1.9{Cos[Q5],Sin[Q5]}}], Point[P5+1.9{Cos[Q5],Sin[Q5]}] }],AspectRatio\[Rule]Automatic]
Date
Source Own work
Author Jakob.scholbach
Converted to SVG.svg This image could be recreated using vector graphics as an SVG file. This has several advantages; see Commons:Media for cleanup for more information. If an SVG form of this image is already available, please upload it. After uploading an SVG, replace this template with {{ vector version available|new image name.svg}}.

Licensing

I, the copyright holder of this work, hereby publish it under the following licenses:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
  • share alike – If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

You may select the license of your choice.
The following pages on Schools Wikipedia link to this image (list may be incomplete):

What is Schools Wikipedia?

Through Schools Wikipedia, SOS Childrens Villages has brought learning to children around the world. In 133 nations around the world, SOS Children's Villages works to bring better education and healthcare to families in desperate need of support. Have you heard about child sponsorship? Visit our web site to find out.